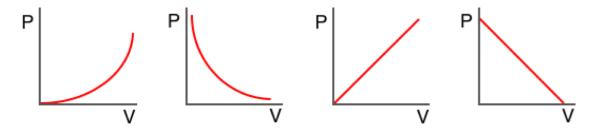
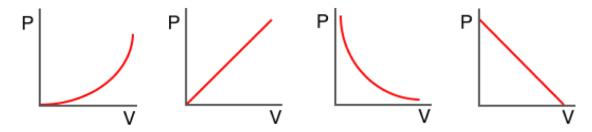

Pressure-Volume Relationships for Gases

Activity 1: Basic Relationship Question Group 1 Question 1 A sample of gas has a constant temperature and number of particles. For such a gas the relationship between the pressure and the volume is best described as arelationship. direct inverse quadratic
Question 2 A sample of gas has a constant temperature and number of particles. For such a gas the relationship between the pressure and the volume is best described as arelationship. inverse quadratic direct
Question 3 A sample of gas has a constant temperature and number of particles. For such a gas the relationship between the pressure and the volume is best described as arelationship. quadratic direct inverse


Question Group 2 Question 4

Which plot best represents the relationship between the pressure and the volume of a sample of gas? (Assume a constant temperature and number of particles.)


Question 5

Which plot best represents the relationship between the pressure and the volume of a sample of gas? (Assume a constant temperature and number of particles.)

Question 6

Which plot best represents the relationship between the pressure and the volume of a sample of gas? (Assume a constant temperature and number of particles.)

Question Group 3 Question 7

A sample of gas has a constant temperature and number of particles. As the volume of
the gas sample is increased, the pressure of the gas will
increase
decrease
remain constant

Question 8

A sample of gas has a constant temperature and number of particles. As the volume of the gas sample is increased, the pressure of the gas will _____. decrease remain constant increase

Question 9

A sample of gas has a constant temperature and number of particles. As the volume of the gas sample is increased, the pressure of the gas will _____. remain constant increase decrease

Activity 2: Proportional Reasoning Question Group 4 Question 10

Observe the data table shown at the right for a sample of gas that has a constant temperature and number of particles. Use the data table to answer the next two questions.

When the volume of the gas is doubled, the pressure of the gas becomes _____.

- a. Two times larger
- c. Eight times larger
- e. One-fourth the size
- g. Not possible to tell

Trial	Volume	Pressure
	(L)	(atm)
1	2.00	6.00
2	3.00	4.00
3	4.00	3.00
4	6.00	2.00
5	8.00	1.50

- b. Four times larger
- d. One-half the size
- f. One-eighth the size

Which pairs of trials demonstrate this relationship? Select all that apply.

a. 1 and 2

b. 1 and 3

c. 1 and 4

d. 1 and 5

e. 2 and 4

f. 2 and 5

g. 3 and 4

h. 3 and 5

Question 11

Observe the data table shown at the right for a sample of gas that has a constant temperature and number of particles. Use the data table to answer the next two questions.

When the volume of the gas is doubled, the pressure of the gas becomes _____.

a. Two times larger

c. Eight times larger

e. One-fourth the size

g. Not possible to tell

Trial	Volume (L)	Pressure (mm Hg)
1	6.00	1600
2	8.00	1200
3	12.0	800
4	16.0	600
5	24.0	400

- b. Four times larger
- d. One-half the size
- f. One-eighth the size

Which pairs of trials demonstrate this relationship? Select all that apply.

a. 1 and 2

b. 1 and 3

c. 1 and 4

d. 1 and 5

e. 2 and 4

f. 2 and 5

g. 3 and 4

h. 3 and 5

Question Group 5 Question 12

Observe the data table shown at the right for a sample of gas that has a constant temperature and number of particles. Use the data table to answer the next two questions.

When the volume of the gas is tripled (i.e., three times larger), the pressure of the gas becomes

- a. three times larger
- c. nine times larger
- e. one-sixth the size

Trial	Volume	Pressure
	(L)	(atm)
1	2.00	6.00
2	3.00	4.00
3	4.00	3.00
4	6.00	2.00
5	8.00	1.50

- b. six times larger
- d. one-third the size
- f. one-ninth the size

g. Not possible to tell

Which pairs of trials demonstrate this relationship? Select all that apply.

a. 1 and 2

b. 1 and 3

c. 1 and 4

d. 1 and 5

e. 2 and 4

f. 2 and 5

g. 3 and 4

h. 3 and 5

Question 13

Observe the data table shown at the right for a sample of gas that has a constant temperature and number of particles. Use the data table to answer the next two questions.

When the volume of the gas is tripled (i.e., three times larger), the pressure of the gas becomes _____.

a. three times larger

c. nine times larger

e. one-sixth the size

g. Not possible to tell

Trial	Volume (L)	Pressure (mm Hg)
1	6.00	1600
2	8.00	1200
3	12.0	800
4	16.0	600
5	24.0	400

b. six times larger

d. one-third the size

f. one-ninth the size

Which pairs of trials demonstrate this relationship? Select all that apply.

a. 1 and 2

b. 1 and 3

c. 1 and 4

d. 1 and 5

e. 2 and 4

f. 2 and 5

g. 3 and 4

h. 3 and 5

Question Group 6 Question 14

Observe the data table shown at the right for a sample of gas that has a constant temperature and number of particles. Use the data table to answer the next two questions.

When the volume of the gas is quadrupled (i.e., four times larger), the pressure of the gas becomes _____.

- a. four times larger
- c. sixteen times larger

Trial	Volume	Pressure
	(L)	(atm)
1	2.00	6.00
2	3.00	4.00
3	4.00	3.00
4	6.00	2.00
5	8.00	1.50

- b. eight times larger
- d. one-fourth the size

e. one-eighth the size

f. one-sixteenth the size

g. Not possible to tell

Which pairs of trials demonstrate this relationship? Select all that apply.

a. 1 and 2

b. 1 and 3

c. 1 and 4

d. 1 and 5

e. 2 and 4

f. 2 and 5

g. 3 and 4

h. 3 and 5

Question 15

Observe the data table shown at the right for a sample of gas that has a constant temperature and number of particles. Use the data table to answer the next two questions.

When the volume of the gas is quadrupled (i.e., four times larger), the pressure of the gas becomes _____.

a. four times larger

c. sixteen times larger

e. one-eighth the size

g. Not possible to tell

Trial	Volume	Pressure
	(L)	(mm Hg)
1	6.00	1600
2	8.00	1200
3	12.0	800
4	16.0	600
5	24.0	400

- b. eight times larger
- d. one-fourth the size
- f. one-sixteenth the size

Which pairs of trials demonstrate this relationship? Select all that apply.

a. 1 and 2

b. 1 and 3

c. 1 and 4

d. 1 and 5

e. 2 and 4

f. 2 and 5

g. 3 and 4

h. 3 and 5

Question Group 7 Question 16

Observe the data table shown at the right for a sample of gas that has a constant temperature and number of particles. Use the data table predict the pressure of the gas when it's volume is 24.0 L.

Pressure at 24.0 L:

Trial	Volume (L)	Pressure (mm Hg)
1	6.00	2400.
2	12.0	1200.
3	18.0	800.

Question 17

Observe the data table shown at the right for a sample of gas that has a constant temperature and number of particles. Use the data table predict the pressure of the gas when it's volume is 24.0 L.

Pressure	at 24.0	L:	

Trial	Volume (L)	Pressure (mm Hg)
1	6.00	3600
2	12.0	1800
3	18.0	1200

Question Group 8 Question 18

Observe the data table shown at the right for a sample of gas that has a constant temperature and number of particles. Use the data table predict the pressure of the gas when it's volume is 36.0 L.

Pressure at 36.0 L:	
---------------------	--

Trial	Volume (L)	Pressure (mm Hg)
1	6.00	2400.
2	12.0	1200.
3	18.0	800.

Question 19

Observe the data table shown at the right for a sample of gas that has a constant temperature and number of particles. Use the data table predict the pressure of the gas when it's volume is 36.0 L.

Pressure at 36.0 L:	
---------------------	--

Trial Volume (L)		Pressure (mm Hg)
1	6.00	3600
2	12.0	1800
3	18.0	1200

Question Group 9

Question 20

Observe the data table shown at the right for a sample of gas that has a constant temperature and number of particles. Use the data table predict the pressure of the gas when it's volume is 48.0 L.

Pressure at 48.0 L:	
---------------------	--

Trial Volume (L)		Pressure (mm Hg)	
1	6.00	2400.	
2	12.0	1200.	
3	18.0	800.	

Question 21

Observe the data table shown at the right for a sample of gas that has a constant temperature and number of particles. Use the data table predict the pressure of the gas when it's volume is 48.0 L.

Pressure	at 48.0	L:	

Trial Volume (L)		Pressure (mm Hg)
1	6.00	3600
2 12.0 180		1800
3	18.0	1200

Activity 3: P-V Data Question Group 10 Question 22

The temperature of a sealed container of gas is kept constant while the volume is changed. This results in a change in the pressure of the gas sample. Based on this information, complete the table below.

Trial	Pressure (atm)	Volume (L)	P*V (L∙atm)
1	0.60	24.0	
2		18.0	
3	1.20		
4	1.80		

Question 23

The temperature of a sealed container of gas is kept constant while the volume is changed. This results in a change in the pressure of the gas sample. Based on this information, complete the table below.

Trial	Pressure (atm)	Volume (L)	P*V (L∙atm)
1	0.80	32.0	
2		24.0	
3	1.60		
4	2.40		

Question 24

The temperature of a sealed container of gas is kept constant while the volume is changed. This results in a change in the pressure of the gas sample. Based on this information, complete the table below.

Trial	Pressure (atm)	Volume (L)	P*V (L∙atm)
1	0.50	36.0	
2		24.0	
3	1.00		
4	1.50		

Question 25

The temperature of a sealed container of gas is kept constant while the volume is changed. This results in a change in the pressure of the gas sample. Based on this information, complete the table below.

Trial	Pressure (atm)	Volume (L)	P*V (L∙atm)
1	1.20	48.0	
2		36.0	
3	2.40		
4	3.60		