Name: \qquad

Angle-Launched Projectiles

The Equations:

Kinematic equations used for 1-dimensional motion can be used for projectile motion as well. The two perpendicular motions - falling and horizontal - are independent of each other. As such, separate sets of equations are needed for these two independent motions. Finally, one assumes negligible air resistance and an acceleration of gravity of $9.8 \mathrm{~m} / \mathrm{s}^{2}$, down(-). Thus, $\mathrm{a}_{\mathrm{x}}=0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ and $\mathrm{a}_{\mathrm{y}}=-9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.

1. Use trigonometric functions to resolve the following velocity vectors into horizontal and vertical components. Then utilize kinematic equations to calculate the other motion parameters. Be careful with the equations; be guided by the principle that "perpendicular components of motion are independent of each other."

A long jumper leaps with an initial velocity of $9.5 \mathrm{~m} / \mathrm{s}$ at an angle of 40° to the horizontal.		Megan Progress, GBS golf standout, hits a nine-iron with a velocity of $25 \mathrm{~m} / \mathrm{s}$ at an angle of 60° to the horizontal.		A place kicker launches a kickoff at an angle of 30° to the horizontal and a velocity of $30 \mathrm{~m} / \mathrm{s}$.	
$\mathrm{V}_{\mathrm{ox}}=$	m / s	$\mathrm{v}_{\mathrm{ox}}=$	m / s	$\mathrm{v}_{\mathrm{ox}}=$	m / s
$\mathrm{V}_{\text {oy }}=$	m / s	$\mathrm{v}_{\text {oy }}=$	m / s	$\mathrm{V}_{\text {oy }}=$	m / s
$\mathrm{t}_{\text {up }}=$	S	$\mathrm{t}_{\text {up }}=$	S	$\mathrm{t}_{\text {up }}=$	S
$\mathrm{t}_{\text {total }}=$	S	$\mathrm{t}_{\text {total }}=$	S	$\mathrm{t}_{\text {total }}=$	S
$\mathrm{d}_{\mathrm{x}}=$		$\mathrm{d}_{\mathrm{x}}=$	m	$\mathrm{d}_{\mathrm{x}}=$	m
d_{y} @ peak =		d_{y} @ peak =	m	$\mathrm{d}_{\mathrm{y}} @$ peak $=$	m
PSYW:		PSYW:		PSYW:	

2. Generalize the calculations performed in question \#1 above by writing the equations used to calculate each of the quantities requested in the problem.

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{ox}}= \\
& \mathrm{t}_{\mathrm{up}}= \\
& \mathrm{d}_{\mathrm{x}}= \\
&
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{oy}}=
$$

\qquad

$$
\mathrm{t}_{\mathrm{total}}=
$$

\qquad

$$
\mathrm{d}_{\mathrm{y}} @ \text { peak = }
$$

\qquad
3. Determine the hang time, the peak height, and the range of a ball launched at a speed of $40.0 \mathrm{~m} / \mathrm{s}$ at angles of (a) 40.0 degrees, (b) 45.0 degrees, and (c) 50.0 degrees from ground level.

40.0 degrees	45.0 degrees	50.0 degrees
$\mathrm{V}_{\mathrm{ox}}=$	$\mathrm{V}_{\mathrm{ox}}=$	$\mathrm{V}_{\mathrm{ox}}=$
$\mathrm{V}_{\text {oy }}=$	$\mathrm{v}_{\text {oy }}=$	$\mathrm{v}_{\mathrm{oy}}=$
$\mathrm{t}_{\text {up }}=$	$\mathrm{t}_{\text {up }}=$	$\mathrm{t}_{\text {up }}=$
$\mathrm{t}_{\text {total }}=$	$\mathrm{t}_{\text {total }}=$	$\mathrm{t}_{\text {total }}=$
$\mathrm{d}_{\mathrm{x}}=$	$\mathrm{d}_{\mathrm{x}}=$	$\mathrm{d}_{\mathrm{x}}=$
$\mathrm{d}_{\mathrm{y} \text {-peak }}=$	$\mathrm{d}_{\mathrm{y} \text {-peak }}=$	$\mathrm{d}_{\mathrm{y} \text {-peak }}=$

4. Dennis launches a water balloon from the top of his 42 -meter high dorm building with a speed of 31 m / s at an angle of 22 degrees. Determine how far from the base of the building that the balloon will land.
5. Using his pitching wedge, Eddie launches a golf ball with an initial velocity of $80 \mathrm{~m} / \mathrm{s}$ at 60 degrees above the horizontal from a position 24 meters from the edge of a building. At what height will the ball strike the building?
\qquad
6. A tennis ball is lobbed high in the air and has a hang time of 3.0 seconds. To what height will the ball rise above the striking location?
7. A golf ball is hit at an angle of 40 degrees and has a total hang time of 6.0 seconds. Determine the horizontal displacement of the ball.
8. A biker projects off a ramp inclined at 22° above the horizontal and lands on the ground at the same vertical height a distance of 3.6 meters away from the launch location. Determine the launch speed of the bike.
