\qquad

Infinity

The use of a parallel mirror system results in the formation of an infinite number of images aligned one behind another. In this activity, you will determine the distance from the right-most mirror (\mathbf{R}) to the nearest images located to the right of that mirror when an object is placed between the two mirrors of the parallel mirror system.

Situation 1:

$$
\mathrm{a}=5 \mathrm{~cm}, \mathrm{~b}=2 \mathrm{~cm}
$$

Image	Distance from R to Image (cm)
1	
2	
3	
4	
5	
6	
7	

Situation 2:

Image	Distance from R to Image (cm)
1	
2	
3	
4	
5	
6	
7	

$$
\mathrm{a}=3 \mathrm{~cm}, \mathrm{~b}=8 \mathrm{~cm}
$$

Follow-up:

Considering only those images located to the right of the right-most mirror:
Write an equation or two that relates the distance of an image from the right-most mirror (d) to the number of the image (N); that is, write an equation that expresses d as a function of N . You may find it easiest to derive an equation for odd-numbered values of N and a second equation for even-numbered values of N. Enjoy the challenge!

