$\qquad$

## Newton's Second Law Problem-Solving

Study from Lessons 3 of the Newton's Laws chapter at The Physics Classroom:
http://www.physicsclassroom.com/Class/newtlaws/u2l3c.html
http://www.physicsclassroom.com/Class/newtlaws/u2l3d.html
For the following problems, construct a free-body diagram and show your work clearly.

1. A rightward force of 302 N is applied to a $28.6-\mathrm{kg}$ crate to accelerate it across the floor. The coefficient of friction between the crate and the floor is 0.750 . Determine the acceleration of the crate.
2. During a football workout, two linemen are pushing the coach on the sled. The combined mass of the sled and the coach is 300 kg . The coefficient of friction between the sled and the grass is 0.800 . The sled accelerates at a rate of $0.580 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. Determine the force applied to the sled by the lineman.
3. A 405-N rightward force is use to drag a large box across the floor with a constant velocity of 0.678 $\mathrm{m} / \mathrm{s}$. The coefficient of friction between the box and the floor is 0.795 . Determine the mass of the box.
4. A $6.58 \times 10^{3} \mathrm{~N}$ upward tension force is exerted on a $521-\mathrm{kg}$ downward-moving freight elevator. (a) Determine the acceleration of the elevator. (b) Determine the distance traveled in 2.83 seconds.
5. A falling skydiver is accelerating in the downward direction at $3.29 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. The mass of the skydiver (including parachute gear) is 67.2 kg . Determine the air resistance force on the skydiver (and accompanying parachute).
6. A 67.2-kg falling skydiver opens his parachute and instantly slows down at a rate of $7.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. Determine the air resistance force on the skydiver (and accompanying parachute).
7. A basketball star exerts a force of 3225 N (average value) upon the gym floor in order to accelerate his $76.5-\mathrm{kg}$ body upward. (a) Determine the acceleration of the player. (b) Determine the final speed of the player if the force endures for a time of 0.150 seconds.
8. A hockey player accelerates a puck ( $\mathrm{m}=0.167 \mathrm{~kg}$ ) from rest to a velocity of $50 \mathrm{~m} / \mathrm{s}$ in 0.0121 sec . Determine the acceleration of the puck and the force applied by the hockey stick to the puck. Neglect resistance forces.
9. Determine the force that must be applied to accelerate a $13.5-\mathrm{kg}$ box across a horizontal surface $(\mu=0.453)$ at a rate of $1.28 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.
10. A 1.82-kg Physics book is set in motion across the floor with an initial speed of $3.25 \mathrm{~m} / \mathrm{s}$. The coefficient of friction between the book and the floor is 0.719 .
(a) Determine its acceleration. (b) Determine the time elapsed before it comes to a stop.
