\qquad

Friction

Read from Lessons 3 of the Newton's Laws chapter at The Physics Classroom:
http://www.physicsclassroom.com/Class/newtlaws/u2l3c.html
http://www.physicsclassroom.com/Class/newtlaws/u2l3d.html

1. A classroom desk supported by long legs is stationary in the room. A teacher comes around and pushes upon the desk in an effort to start it into a state of motion. The desk does not budge. The desk remains at rest because \qquad .
a. there is a force of static friction opposing its motion
b. there is a force of kinetic or sliding friction opposing its motion
c. there is a force of rolling friction opposing its motion
2. A classroom desk supported by long legs is stationary in the room. A teacher comes around and pushes upon the desk in an effort to start it into a state of motion. The desk is finally accelerated from rest and then moves at a constant speed of $0.5 \mathrm{~m} / \mathrm{s}$. The desk maintains this constant speed because \qquad -.
a. there is a force of static friction balancing the teacher's forward push
b. there is a force of kinetic or sliding friction balancing the teacher's forward push
c. there is a force of rolling friction balancing the teacher's forward push
d. the teacher must have stopped pushing
3. The symbol $\boldsymbol{\mu}$ stands for the \qquad
a. coefficient of friction
b. force of friction
c. normal force
4. Use the friction equation and $\mathrm{F}_{\text {net }}=\mathrm{m} \bullet \mathrm{a}$ to fill in the blanks in the following situations.

5. A $5.0-\mathrm{kg}$ mass is pushed with a horizontal force of 72 N . The coefficient of friction is 0.31 . Sketch a free-body diagram; label the forces according to type. Then, determine the net force and the acceleration of the mass. Use an FBD and PSYW.
6. Justin Time is driving his $1225-\mathrm{kg}$ car at a speed of $22.0 \mathrm{~m} / \mathrm{s}$ when he slams on the brakes and skids to a stop. The coefficient of friction between the car and the road is 0.850 . Determine the acceleration. (Neglect air resistance.) Use an FBD and PSYW.
7. Algebraically show that $\mathrm{a}=\mu \bullet \mathrm{g}$ for the situation at the right where an object is skidding to a stop under the influence of friction.

8. Baseball all-star Willie Makeit ($\mathrm{m}=87.0 \mathrm{~kg}$) approaches third base at a speed of $9.20 \mathrm{~m} / \mathrm{s}$. He dives head-first, landing a distance of 1.8 m from the base. If the coefficient of friction between Willie's uniform and the infield dirt is 0.760 , with what speed will he be sliding when he reaches the base?
9. Kent Holditnomoor is racing across the bleachers at the B-Ball game when he accidentally kicks Anna Litical's 1.10-kg physics book (which she had brought to the game for a little half-time pleasure). The book begins sliding with a speed of $2.50 \mathrm{~m} / \mathrm{s}$ and a distance of 0.600 -meters from the bleacher's edge. If the book encounters a leftward force of friction, then with what speed will it leave the bleachers? (The coefficient of friction between book and bleachers is 0.20.)
