Up and Down Motion in Free Fall

1. A ball is thrown upward from ground level with an initial speed of $49.0 \mathrm{~m} / \mathrm{s}$. Use the how far? and how fast? equations to determine the displacement and velocity of the ball each consecutive second.

How Far? $\quad d=v_{i} \bullet t+0.5 \bullet a \bullet t^{2}$
How Fast? $\quad v_{f}=v_{i}+a \bullet t$
2. At what time is the ball ...
a. ... at its highest point? _ S
b. ... landing on the ground? \qquad
3. How does the time to rise compare to the time to fall?
4. How does the launch speed of the ball compare to the landing speed of the ball?

t Time in Air (s)	Displacement (\mathbf{m})	$\mathbf{\mathbf { v }}$ Velocity (m/s)
0.0	0.0	49.0
1.0		
2.0		
3.0		
4.0		
5.0		
6.0		
7.0		
8.0		
9.0		
10.0		

5. Write an equation that relates the time to rise to the highest point ($\mathbf{t}_{\text {up }}$) to the initial vertical velocity.

$$
t_{\text {up }}=
$$

6. Use the equation in \#5 and other concepts from \#1-\#4 to complete the following statements:
a. A ball thrown upward at $19.6 \mathrm{~m} / \mathrm{s}$ will reach its peak at $\mathrm{t}=$ \qquad s and land on the ground at t
$=$ \qquad s . It will be moving with a speed of \qquad m / s when it lands.
b. A ball thrown upward at $39.2 \mathrm{~m} / \mathrm{s}$ will reach its peak at $\mathrm{t}=$ \qquad s and land on the ground at t
$=$ \qquad s. It will be moving with a speed of \qquad m / s when it lands.
c. A ball thrown upward at $26.2 \mathrm{~m} / \mathrm{s}$ will reach its peak at $\mathrm{t}=$ \qquad s and land on the ground at t $=$ \qquad s . It will be moving with a speed of \qquad m / s when it lands.
d. A ball thrown upward at \qquad m / s will reach its peak at $\mathrm{t}=$ \qquad s and land on the ground at $t=6.4 \mathrm{~s}$. It will be moving with a speed of \qquad m / s when it lands.
e. A ball thrown upward at \qquad m / s will reach its peak at $\mathrm{t}=$ \qquad s and land on the ground at $t=$ \qquad s. It will be moving with a speed of \qquad m / s when it lands. (Free Choice)
f. A ball thrown upward at \qquad m / s will reach its peak at $\mathrm{t}=$ \qquad s and land on the ground at $t=$ \qquad s. It will be moving with a speed of \qquad m / s when it lands. Insert expressions, using symbols $\mathbf{v}_{\mathbf{i}}$ and \mathbf{a}.
