Describing Motion with Data Tables

MOP Connection: Kinematic Concepts: Mission KC8
Motion can be described with words, diagrams, data tables, equations, and graphs. Using data tables to describe the motion of objects involves showing how the position and/or the velocity changes with regular intervals of time change.

1. What is the speed of the following objects? Record below the table.

Object A

Time (s)	Pos'n (m) $^{\text {(m) }}$
0.0	0.0
1.0	5.0
2.0	10.0
3.0	15.0
4.0	20.0
5.0	25.0

Speed $=$ \qquad m / s

Object B

Time (s)	Pos'n (m)
0.0	6.0
1.0	10.0
2.0	14.0
3.0	18.0
4.0	22.0
5.0	26.0

Speed $=$ \qquad m / s

Object C

Time (s)	Pos'n (m) $^{\prime 2}$
0.0	2.0
0.5	6.0
1.0	10.0
1.5	14.0
2.0	18.0
2.5	22.0

Speed $=$ \qquad m / s
2. The dot diagram for Object \mathbf{B} is shown below. Draw the dot diagram for objects \mathbf{A} and \mathbf{C}.

B: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

C:

3. What is the acceleration of the following objects? Record below the table.

Object D

Time (s)	Vel. (m/s)
0.0	4.0
1.0	8.0
2.0	12.0
3.0	16.0
4.0	20.0
5.0	24.0

Accel'n = \qquad $\mathrm{m} / \mathrm{s} / \mathrm{s}$

Object E

Time (s)	Vel. (m/s)
0.0	18.0
0.5	15.0
1.0	12.0
1.5	9.0
2.0	6.0
2.5	3.0

Accel'n = \qquad $\mathrm{m} / \mathrm{s} / \mathrm{s}$

Object F

Time (s)	Pos'n (m)
0.0	4.0
0.5	6.0
1.0	8.0
1.5	10.0
2.0	12.0
2.5	14.0

Accel' $\mathrm{n}=$ \qquad $\mathrm{m} / \mathrm{s} / \mathrm{s}$
4. Explain your answer for Object F:
5. Draw the dot diagram for objects \mathbf{D}, \mathbf{E}, and \mathbf{F}.

6. The data at the right represent the motion of a car.
a. Determine the acceleration for the car. Include units.
b. Is the velocity of this car constant? \qquad Explain how you know.

Time (s)	Velocity (m/s)
0.0	0.0
1.0	5.0
2.0	10.0
3.0	15.0
4.0	20.0

c. Is the acceleration of this car constant? \qquad Explain how you know.
d. How fast would this car be moving at 8.0 seconds? \qquad
7. Can an accelerating object have a constant acceleration and a changing velocity? \qquad Explain.
8. Can an accelerating object have a constant velocity and a changing acceleration? \qquad Explain.
9. Object \mathbf{G} is moving at $20.0 \mathrm{~m} / \mathrm{s}$ and then accelerates at $6.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 2.0 seconds. Object \mathbf{H} is moving at $24.0 \mathrm{~m} / \mathrm{s}$ and accelerates at $-6.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 4.0 seconds. Object I has a non-uniform acceleration. Fill in the tables for objects G, H, and I.

Object G

Time (s)	Vel. (m/s)
0.0	
0.5	
1.0	
1.5	
2.0	

Object H

Time (s)	Vel. (m/s)
0.0	
1.0	
2.0	
3.0	
4.0	

Object I

Time (s)	Vel. (m/s)
0.0	12.0
1.0	
2.0	
3.0	
4.0	

