G, g, and Gee Whiz

Mass Objec (kg)	t1 Obje	ct 2 Separation		Significance of Numbers
60.0	60.0	0 1.0		Two typical students in physics class
60.0	5.98x1	.0 ²⁴ 6.37x10 ⁶	;	A typical student on the surface of the Earth
60.0	11.96x	10 ²⁴ 6.37x10 ⁶		A typical student on <i>an Earth</i> with twice the mass
60.0	5.98x1	.0 ²⁴ 3.18x10 ⁶		A typical student on <i>an Earth</i> with half the radius
60.0	5.98x1	.0 ²⁴ 6.47x10 ⁶	;	A <i>typical</i> student in orbit 60 miles above the Earth
60.0	1.2x1	0 ²² 1.15x10 ⁶	;	A <i>typical</i> student on the surface of the Pluto
60.0	1.901x	10 ²⁷ 6.98x10 ⁷	,	A <i>typical</i> student on the "surface" of the Jupiter

1. Use the gravitational force equation to fill in the following table ($G = 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$).

*The distance of separation means the distance between the centers of the two masses (NOT the distance between the two objects' edges.)

2. Use the gravitational acceleration equation to fill in the following table (G = $6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$).

Mass of Object Creating the Field (kg)	Distance of Separation* (m)	g (m/s ²)	Significance of Numbers
5.98x10 ²⁴	6.37x10 ⁶		On earth's surface
5.98x10 ²⁴	6.48x10 ⁶		60 miles above earth's surface
5.98x10 ²⁴	42.3x10 ⁶		Above earth's surface in a geosynchronous orbit
1.2x10 ²²	1.15x10 ⁶		On Pluto's surface
1.901x10 ²⁷	6.98x10 ⁷		On Jupiter's "surface"

*The distance of separation means the distance between the centers of the two masses (NOT the distance between the two objects' edges.)