Circular Motion, Gravitation, and Planetary Motion Beliefs

Identify the following statement as being either true (T or t) or false (F or f).

(T = strongly agree, t = *weakly* agree; F = strongly disagree, f = *weakly* disagree)

T, t, f, F?	Sta 1.	A ball is moving around a circular ring in a clockwise direction. A top view is shown. The ball will lose contact with the ring at A and regain contact at B.
	2.	On a roller coaster ride, a rider feels a weird sensation when moving fast over the crest of a hill. This is because there is a force trying to throw the rider and the car upwards off the track.
	3.	An object moving with a constant speed in a circle has zero acceleration.
	4.	A car makes a left-hand turn. The front-seat passenger feels a sensation of being pushed outward. This is best explained by the presence of a centripetal force pushing the person "out the door."
	5.	The direction of an object's acceleration is always in the direction that the object moves.
	6.	A net force will cause an acceleration. The direction of the acceleration could be different than the direction of the net force.
	7.	If an elevator were in free-fall from 10 stories high, then its occupants could jump up the moment before impact and be completely safe.
	8.	Suppose that a satellite is in orbit about the Earth. Objects that are present on the satellite do not weigh anything; they are weightless.
	9.	The Space Shuttle and its astronauts orbit the Earth. Being in gravity-free space, they weigh 0 Newtons.
	10.	Gravitational forces only act between large objects such as the sun, the planets, the moon, etc.
	11.	If the Earth was not spinning, then there wouldn't be any gravity.
	12.	The speed required for a satellite to orbit the Earth depends on its mass. A more massive satellite would require a greater orbital speed.