Lens Practice

Read from Lesson 5 of the Refraction and Lenses chapter at The Physics Classroom:

 http://www.physicsclassroom.com/Class/refrn/u14l5f.htmlUse the lens equation and magnification equation to solve the following problems.

1. Determine the image distance and image height for a $4.0-\mathrm{cm}$ tall object placed $54.0-\mathrm{cm}$ from a converging lens having a focal length of 18.0 cm .
2. Determine the image distance and image height for a $4.0-\mathrm{cm}$ tall object placed $36.0-\mathrm{cm}$ from a converging lens having a focal length of 18.0 cm .
3. Determine the image distance and image height for a $4.0-\mathrm{cm}$ tall object placed $24.0-\mathrm{cm}$ from a converging lens having a focal length of 18.0 cm .
4. Determine the image distance and image height for a $4.0-\mathrm{cm}$ tall object placed $12.0-\mathrm{cm}$ from a converging having a focal length of 18.0 cm .
5. A magnified, inverted image is located a distance of 32.0 cm from a converging lens with a focal length of 12.0 cm . Determine the object distance and tell whether the image is real or virtual.

Light, Refraction and Lenses

6. ZINGER: An inverted image is magnified by 2 when the object is placed 22 cm in front of a converging lens. Determine the image distance and the focal length of the lens.
7. A diverging lens has a focal length of -12.8 cm . An object is placed 34.5 cm from the lens's surface. Determine the image distance.
8. Determine the focal length of a diverging lens that produces an image that is 12.9 cm from the lens (and on the object's side) when the object is 32.4 cm from the lens.
9. A $2.85-\mathrm{cm}$ diameter coin is placed a distance of 31.4 cm from a diverging lens that has a focal length of -11.6 cm . Determine the image distance and the diameter of the image.
10. The focal point is located 20.0 cm from a diverging lens. An object is placed 12.0 cm from the lens. Determine the image distance.
