
Momentum Conservation as a Guide to Thinking

Read from Lesson 2 of the Momentum and Collisions chapter at The Physics Classroom: http://www.physicsclassroom.com/Class/momentum/u4l2dd.html

MOP Connection: Momentum and Collisions: sublevel 10

1. The following diagrams depict inelastic collisions between objects of different mass. For each case, determine the post-collision velocity (v') of the two *coupled* objects. Express v' in terms of v.

determine the post-comston velocity (v) of the t		
a.	Before	After (m/m)
a.	1	⊎ '=???
	Before	After
c.	(m)—▼(3m)	(m) (3m)
)	ਚ' =???
	Before	After
e.	2m → 4m	2m 4m v' = ????
	Before	After
g.	2m → m	<u>2m</u> m
		ਦ ਾ = ???
	Before	After
i.	(7m) ♥ (3m)	7m (3m)
		▼' = ???

Momentum and Collisions

2. Complete the following verbal statements to illustrate your understanding of the effect of varying mass on the post-collision velocity.

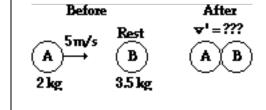
a. If an object of mass **m** collides and velocity **v** collides inelastically with an object of mass **3m** that is initially at rest, then the amount of total *system* mass in motion will increase by a factor of ______. The new velocity (**v**')

will be _____v.

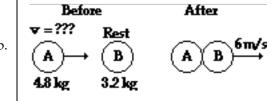
b. If an object of mass **m** collides and velocity **v** collides inelastically with an object of mass **4m** that is initially at rest, then the amount of total *system* mass in motion will increase by a factor of ______. The new velocity (**v**')

will be _____v.

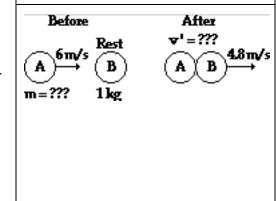
c. If an object of mass **3m** collides and velocity **v** collides inelastically with an object of mass **4m** that is initially at rest, then the amount of total *system* mass in motion will increase by a factor of ______ and the velocity of the system will decrease by a factor of ______. The new velocity (**v**')

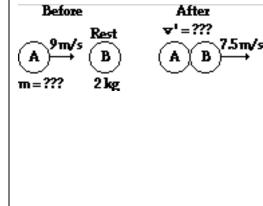

will be _____v.

d. If an object of mass **5m** collides and velocity **v** collides inelastically with an object of mass **3m** that is initially at rest, then the amount of total *system* mass in motion will increase by a factor of _____ and the velocity of the system will decrease by a factor of _____. The new velocity (**v**')


will be _____v.

3. Use proportional reasoning to determine the unknown quantity in the following collisions.


a.


b.

c.

d.

