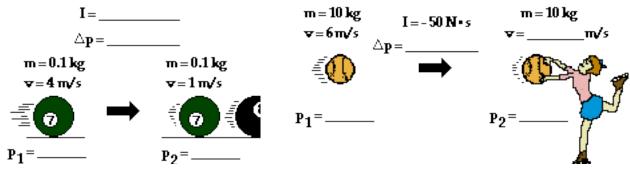
Momentum, Impulse and Momentum Change

Read from Lesson 1 of the Momentum and Collisions chapter at The Physics Classroom:

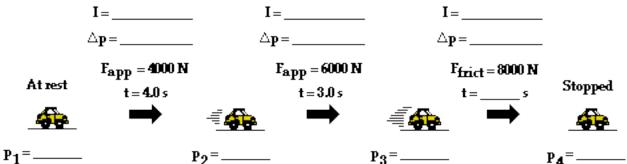
http://www.physicsclassroom.com/Class/momentum/u4l1a.html http://www.physicsclassroom.com/Class/momentum/u4l1b.html

	http://www.physicsciassiooni.com/ciass/montentum/u+110.html
MC	P Connection: Momentum and Collisions: sublevels 1 and 2
Mo : 1.	The momentum of an object depends upon the object's Pick two quantities. a. mass - how much <i>stuff</i> it has b. acceleration - the rate at which <i>the stuff</i> changes its velocity c. weight - the force by which gravity attracts <i>the stuff</i> to Earth d. velocity - how fast and in what direction it's <i>stuff</i> is moving e. position - where the <i>stuff</i> is at
2.	Momentum is a quantity. a. scalar b. vector
3.	Which are complete descriptions of the momentum of an object? Circle all that apply. a. 2.0 kg/s b. 7.2 kg•m/s, right c. 6.1 kg•m/s², down d. 4.2 m/s, east e. 1.9 kg•m/s, west f. 2.3 kg•m/s
4.	The two quantities needed to calculate an object's momentum are and
5.	Consider the mass and velocity values of Objects A and B below. Compared to Object B, Object A has momentum. a. two times the
6.	Calculate the momentum value of (Include appropriate units on your answers.) a a 2.0-kg brick moving through the air at 12 m/s.
	b a 3.5-kg wagon moving along the sidewalk at 1.2 m/s.
7.	With what velocity must a 0.53-kg softball be moving to equal the momentum of a 0.31-kg baseball moving at 21 m/s?
Imp 8.	In a collision, an object experiences a(n) acting for a

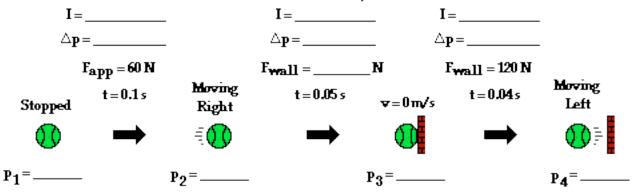
certain amount of _____ and which is known as a(n) _____; it serves to change the _____ of the


object.

Momentum and Collisions


- 9. A(n) _____ causes and is equal to a change in momentum.
 a. force b. impact c. impulse d. collision
- 10. Calculate the impulse experienced by (Show appropriate units on your answer.) a. ... a 65.8-kg halfback encountering a force of 1025 N for 0.350 seconds.
 - b. ... a 0.168-kg tennis ball encountering a force of 126 N that changes its velocity by 61.8 m/s.
- 11. Determine the impulse (I), momentum change (Δp), momentum (p) and other values.

A 7-ball collides with the 8-ball.


A moving medicine ball is caught by a girl on ice skates.

A car is at rest when it experiences a forward propulsion force to set it in motion. It then experiences a second forward propulsion force to speed it up even more. Finally, it brakes to a stop.

A tennis ball is at rest when it experiences a forward force to set it in motion. It then strikes a wall where it encounters a force that slows it down and finally turns it around and sends it backwards.

